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Count on me: learning to count on a single image
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Abstract—Individuating and locating repetitive patterns in still
images is a fundamental task in image processing, typically
achieved by means of correlation strategies. In this paper we
provide a solid solution to this task using a differential geometry
approach, operating on Lie algebra, and exploiting a mixture
of templates. The proposed method asks the user to locate
few instances of the target patterns (seeds), that become visual
templates used to explore the image. We propose an iterative
algorithm to locate patches similar to the seeds working in three
steps: first clustering the detected patches to generate templates
of different classes, then looking for the affine transformations,
living on a Lie algebra, that best link the templates and the
detected patches, and finally detecting new patches with a
convolutional strategy. The process ends when no new patches
are found. We will show how our method is able to process
heterogeneous unstructured images with multiple visual motifs
and extremely crowded scenarios with high precision and recall,
outperforming all the state of the art methods.

Index Terms—Object counting, Repetitive patterns, Lie Alge-
bra, Template matching, Congealing

I. INTRODUCTION

INDIVIDUATING repetitive complex patterns – i.e. multi-
ple instances of the same class of visual entities – in a sin-

gle image is a crucial operation in many real-world computer
vision and image processing applications, like counting cells
in microscopic images, profiling crowds in surveillance videos,
and performing wildlife census (see Fig. 2 for some examples).
Very often, these tasks have to be carried out in very diverse
conditions: think for example to biologists monitoring birds
migrations or policemen counting people at public event using
hand held cameras; such a task is dubbed texton detection
(or texton learning) when the basic patterns to be counted
are composed by few pixels, carry no semantic meaning, and
are located in a strongly structured layout [1]; conversely, the
expression object counting is adopted when the patterns are
instances of a given class of objects (e.g. cells, pedestrians,
animals, etc.). In this paper we will focus on this latter task.

In the literature, object counting is performed in very
different ways: by adopting detection strategies [2]–[5], by
regression [6]–[8], or by segmentation [9], [10] (see more
details in Section II); in all these cases, a learning phase on
labeled data is required to learn the specific model of the
object whose instances have to be individuated. This opens
up to some problems: the need of training data demands con-
siderable time and resources; moreover, some heterogeneity
in the labeled data is compulsory to ensure generalization in
the counting stage. Moreover, collecting “good” training data
is an issue in itself for object detection and recognition [11],
[12].
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Fig. 1. A sample image used in our tests and the patches detected with our
method, automatically clustered into six different classes (highlighted with
different colors). On the right hand side, the final templates of each class.

For example, let consider Fig. 1: a standard fish detector
would reasonably give very poor results due to the intraclass
variability and perspective distortions. In addition, the objects’
classes to be counted could be disparate, and co-present in the
same picture, as in the above example image where there are
diverse fish species. This amounts to say that understanding
which particular detector(s)/regressor(s) have to be used given
a particular image is a crucial issue and, in the case of novel
objects’ classes to be considered, we fall back again on the
problem of proper training data collection. This is especially
true in the case of medical image analysis, where the nature
of the items to be counted is very different to the standard
set of objects whose detectors are available in the literature,
such as Deformable Parts Model (DPM) [13] . This actually
brings to approaches where the user is asked to mark tens of
images or hundreds of instances [14], or to ad-hoc solutions,
as in the case of specific classes of entities [15], producing a
classifier which actually estimates densities of objects, rather
than individuating every single object instance [16].

In this paper, we provide a solid solution to the counting
problem, offering a framework that: 1) does not require any
preliminary training step; 2) requires minimal supervision
by the user, who is asked to mark a minimal number of
instances (seeds); and 3) is able to count radically different
types of objects, without necessarily asking the user to explic-
itly individuate different typologies of items; vice versa, the
algorithm provides a componential counting report – that is, it
automatically individuates different kinds of objects, and then
counts them.

The obtained results are convincing, also compared to all
those techniques which work in similar circumstances, as
in [16], [17]. In particular, we will discuss both qualitative
and quantitative results, showing that our approach provides
functionalities so far unreachable by any other counting tech-
nique, and is applicable to a vast heterogeneity of images,
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ranging from crowd photos to traffic shots, from naturalistic
pictures to medical images, with just a single image.

Summarizing, the main contributions of this work are:
• a novel framework that learns to count similar objects

– i.e. repetitive patterns – on a single image without the
need of a training step and requires a minimal supervision
by the user;

• a novel dataset of images taken from diverse applicative
fields (e.g. surveillance, medical image analysis, etc.) and
containing heterogeneous multiple objects and drastically
different geometrical layouts.

The rest of the paper is organized as follows. In Section II
we review the related literature; in Section III we present our
proposed framework, while in Section IV we detail extensive
experiments. Finally, Section V concludes the paper with some
discussions and directions for future works.

II. RELATED WORK

The counting problem has been widely studied in the last
years, and several different approaches have been proposed
in literature. A first way to perform object counting is by
using detection strategies: in [2], Barinova et al. embed a
Hough transform-based search into a probabilistic framework
for object detection bypassing the problem of multiple peaks
identification, avoiding non-maximum suppression heuristics;
Leibe et al. [4] consider object categorization and figure-
ground segmentation as two interleaved processes that closely
collaborate towards a common goal, they also use Generalized
Hough Transform to represent the object shape. Dong et
al. [3] propose an exemplar-based algorithm which maps the
global shape by Fourier descriptors to various configurations
of humans for people detection in crowd; they also use locally
weighted aeraging to interpolate for the best possible candidate
configuration. Wu et al. [5] address the partial occlusion of the
object to be detected by using whole-object and part detectors,
defining a part hierarchy and computing a joint likelihood
which includes an inter-object occlusion reasoning based on
the object silhouettes extracted by the whole-object detector.

A different way to proceed is to train a classifier to estimate
the density of objects in an image; this is particularly suited
for inferring the number of pedestrians in a crowd. Cho et
al. [6] propose to extract a set of significant features from
sequences of images, and then to model those features by
a neural network to extract the crowd density in complex
scenes. Kong et al. [7] take into account feature normalization
mechanisms to deal with perspective projections and different
camera orientations; they compute features including edge
orientations and blob size histograms resulted from edge
detection and background subtraction to learn the relationship
between the features histograms and the number of pedestrians
in the crowd. Marana et al. [8] extract features by means
of texture analysis techniques based on grey level transition
probabilities on digitised images to feed a self-organizing
neural network which performs the crowd density estimation.

Other works are based on segmentation strategies: Ryan et
al. [10] run foreground/background segmentation to extract
blobs of crowd first, and then train a regressor from simple

holistic features to estimate the number of pedestrians in each
blob; similarly, Chan et al. [9] use a mixture of motion models
encoding dynamic textures to segment moving crowds into
homogeneous motion blobs, then the correspondence between
a set of holistic features and the number of people is learned
with Gaussian process regression.

Recently, Arteta et al. [16] propose an interactive counting
system able to count object instances in an image by estimating
their density with ridge regression; their results show how well
bigger training sets improve the counting accuracy. Further-
more, the authors highlight that the system does not handle
perspective geometry due to the fact that the extracted features
consider only CIELAB color space and no geometrical aspects.

A common aspect of all these methods is the need of a
training set to learn the parameters of an object detector or a
density estimator.

The strategy adopted in this work is based on the detection
of repetitive patterns, which is one of the classical and long-
standing problems of computer vision and whose importance
has been explained in [18]. In that article, Leung and Malik
present an algorithm to detect, localize and group instances of
repeated scene elements which exploits window matching and
region growing strategies. Hays et al. [19] use higher-order
feature matching algorithm to discover the lattices of near-
regular textures in images; Park et al. [20] improve this work
by formulating the 2D lattice detection as a spatial, multitarget
tracking problem, solved within a Markov Random Field
(MRF) framework using a Mean-Shift Belief Propagation
(MSBP) method. Schaffalitzky and Zisserman [21] propose
a RANSAC-based grouping algorithm for patterns that could
be considered as lying on a plane in the captured scene, while
Lin and Liu [22] exploit a region growing method to detect
dynamic lattice patterns and utilize belief propagation and
particle filtering to handle the dynamic tracking problem. The
last methods are based on the detection of low-level features
and their grouping, thanks to perspective geometric transforms
or global deformable templates.

Other grouping methods are based on local alignment rather
than on global strategies. Wu et al. [23] deal with the problem
of analyzing large repetitive structures in urban scenes and
propose an algorithm based on the repetition of local symmetry
axes. Spinello et al. [24] use local descriptors and a contour
codebook to detect repetitions in a lattice model. In two recent
works [25], [26], Cai and Baciu propose to use Lie algebra
to align repetitive patterns in near regular textures; in [17],
the same authors provide an algorithm for repetitive patterns
detection and grouping based on a Lie group model, inherited
from visual tracking strategies published in [27] and [28].

In this paper, we present a new framework that relies on the
combination of template matching and congealing strategies.
The method evaluates how comparable two visually similar
patches are, by mapping the affine transformations that allow
to overlap them in a Lie group. We exploit the congealing
method presented in [29], forcing it to work under affine
transformation constraints. The proposed method is able to
simultaneously manage multiple texton templates, i.e. different
object classes in the same image or different configurations of
the same object class. We also introduce a deformation con-
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straint inside the congealing process by means of the definition
of distance between two matrices given in [30]; this is needed
to avoid degenerate solutions of the congealing algorithm, as
highlighted by Vedaldi and Soatto in [31]. In conclusion, while
most of the related works focus on the inference of a structure
considering invariant repetitive patterns in images, we want
to count objects in an image where the structural constraint
is not essential and the repeated instances can have different
configurations and intra-class variations, e.g. as could be found
in people counting in crowded situations.

III. METHOD

The fundamental step of our approach is template matching,
which consists in individuating in the image those regions that
best match a given visual template. Since a simple template
matching is usually not enough to achieve convincing results,
due to the rigidity of the template, our proposal is to allow the
template to be deformed by a set of affine transformations.

The proposed framework works in an iterative way, with
an initialization phase requiring user interaction. In the initial-
ization step, the user is asked to locate few instances of the
objects to count (seeds). After that, the iteration runs over 4
steps:

1) Patch Description: patches are described by means of a
Bag-of-Words (BoW) model, considering RGB values,
SIFT and HOG features;

2) Component Extraction: an unsupervised clustering ap-
proach is carried out to identify different components,
i.e. different objects or different configurations of the
same object;

3) Congealing: an optimization procedure allows to de-
scribe all the patches belonging to a given component
by means of a common template patch and a set of affine
deformation matrices;

4) Template Matching: we perform cross-correlation over
the entire image to identify those regions that exhibit
high similarity with the template.

The process stops when a new iteration does not detect any
new patch; this is usually reached in our experiments after
3 iterations on a 600×600 pixels image. The scheme of the
approach is sketched in Algorithm 1. In the rest of this section
each step will be explained in the details.

Algorithm 1 Main
Input: image I
Output: detected patches P , labels C, templates T
G ← Initialization: identity matrices
C ← Initialization: all patches belonging to one cluster
repeat
Pd ← Patches Description (Alg. 2)
C ← Component Extraction (Alg. 3)
T ,G ← Congealing (Alg. 4)
Pnew ← Template Matching (Alg. 5)
P ← P ∪ Pnew

until no new patches found (Pnew = ∅)

A. Initialization

Given an image I, the user is required to select a set P of
N patches containing the objects to be detected in the rest
of the image. We will call these patches seeds. Typically, the
algorithm gives good results with a number of seeds of about
5% of the total number of instances in the image, depending
also on the number of different objects to focus on.

B. Patch Description

Each patch is described with a Bag-of-Words (BoW) rep-
resentation on 3 different kinds of features: RGB pixels,
dense SIFT [32] and dense HOG [33] features. To add spatial
information to BoW we build spatial histograms by dividing
each patch into a grid of Mp sub-patches and for each
sub-patch we extract the BoW histograms of Nw words.
To this sake, dense SIFT and dense HOG features are first
extracted; then, the dictionary is learnt for each kind of feature
separately (including RGB), by k-means clustering employing
the euclidean distance; finally, the histograms are generated
for each feature on each patch. All the resulting histograms
are then concatenated so that the resulting description of all
the patches is the matrix Pd of size N × 3NwMp.

Algorithm 2 Patch description
Input: patches P , transformation matrices G
Output: Patches description Pd

for all patch pi ∈ P do
pig ← Apply transformation Gpi ∈ G on patch pi

pid ← Extract SIFT, HOG and RGB descriptors
end for
V ← Generate vocabulary V using k-means over all pd
for all patch pi ∈ P do

Split pi into a grid of Mp sub-patches
for all sub-patch do
pih ← Concatenate the BoW representations

end for
Pd ← Push pih to the final patches description matrix

end for

C. Components Extraction

Components extraction identifies clusters of patches visually
similar to each other. For this aim, clustering is performed by
affinity propagation which is based on the idea of iteratively
exchanging messages between data points (i.e. patches) until
a proper set of exemplars are found. Such exemplars identify
clusters [34]. The clustering is unsupervised on the number
of components selected, minimizing thus the degree of user
supervision. Starting from the set P of all the patches detected
in the previous iteration, the output of this step is a set C of
labels representing C clusters, each one composed by a set Pc

of nc patches such as P =
⋃

c Pc, with 1 ≤ c ≤ C.
The clustering algorithm acts on a dissimilarity matrix

defined as the additive inverse Hadamard product of two
distance matrices: one defined as the Batthacharyya distance
computed over the patches descriptors described in the previ-
ous paragraph, and the second defined as pixel-wise difference
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of RGB colors of each pair of patches. Notably, affinity
propagation works even with few samples, as in the case of
the first iteration of our approach.

Algorithm 3 Components extraction
Input: patches P , patches description Pd

Output: labels C
DB ← Compute Bhattacharya distance
DC ← Compute pixelwise difference of RGB colors
S← Compute the similarity matrix as −(DB ∗DC)
C ← Affinity Propagation applied to S

D. Congealing

The congealing task is defined as “the problem of aligning
an ensemble of images in an unsupervised manner” [35]. The
proper way to perform the alignment assumes the knowledge
of the parametric nature of the misalignment (e.g. translation,
rotation, affine transformation, etc.) and also the fact that
patches should have similar appearance.

The congealing algorithm used in our approach is based on
the conventional unsupervised least-squares congealing [35],
[36] which operates on a set of N unaligned patches. The
main idea is that all the patches pic ∈ Pc are assumed to be
related with a common template by an affine transformation
matrix Gpi

c
such as:∥∥pic −Tc ◦Gpi

c

∥∥2 < ε (1)

where ε is an arbitrary small positive value and T ◦ G
represents the application of an affine deformation G to the
template T, see Appendix A for more details. It is also
possible to extend Equation (1) by considering the relationship
between two different patches pic and pjc belonging to the same
component c: ∥∥∥pic − pjc ◦G−1pj

c
◦Gpi

c

∥∥∥2 < ε (2)

Each patch is associated with the related template by means
of the affine deformation G, and therefore, from Equation (11)
(Appendix A), by means of 6 unknown transformation param-
eters ak. Thus, we can define for each patch pic the array of
parameters aic = (a1pi

c
, . . . , a6pi

c
), and for each component c the

collection of all the parameters’ vectors ac = (a1
c , . . . , anc

c ).
The purpose of our congealing algorithm is to estimate, for
each component separately, the best parameters by minimizing
the cost function:

Φ(ac) =
∑

1≤i,j≤nc
i6=j

1

2

∥∥∥pic − pjc ◦G−1pj
c
◦Gpi

c

∥∥∥2 (3)

with respect to the matrix ac ∈ R6×nc with the constraint of
Equation (1).

We use Newton’s method to perform the minimization,
considering the first order necessary condition:

∇aicΦ(ac) = 0 (4)

with the operator ∇aic = (∂/∂a1pi
c
, ∂/∂a2pi

c
, . . . , ∂/∂a6pi

c
).

Equation (4) can be solved considering the iterative scheme:

aic(k + 1) = aic(k)−
[
H · Φ(aic(k))

]−1∇Φ(aic(k)) (5)

where k indicates the iteration index in the minimization
process and H is the Hessian matrix. In such a case, instead
of directly inverting the Hessian matrix, it is more efficient to
compute the vector d(k) =

[
H · Φ(aic(k))

]−1∇Φ(aic(k)) as
the solution of the linear system:[

H · Φ
(
aic(k)

)]
dk = ∇Φ

(
aic(k)

)
(6)

This formulation of the minimization process relies on the
image gradient computation, which is a very noise sensitive
operation and could lead to degenerate solutions. In order
to avoid this problem, we introduce the concept of distance
between two transformation matrices in the Lie group Aff(2)
as defined by Porikli in [30]. Thus, a hard constraint is
posed on the distance between transformation matrices in two
subsequent iterations as:∥∥Log (Gpi

c
(k), Gpi

c
(k + 1)

)∥∥ ≤ τd (7)

The last step of the congealing phase aims at generating,
for each component, the template to be used for the matching
phase. This template is defined as the average of all the nc
deformed patches belonging to each component c:

Tc =
1

nc

∑
1≤i≤nc

pic ◦G−1pi
c

(8)

The set of all the templates Tc is referred as T , while G is
the set of all the transformation matrices Gp.

Algorithm 4 Congealing
Input: patches P , transformation matrices G, labels C
Output: templates T , transformation matrices G

for all components c ∈ C do
repeat

ac(k)← Estimate coefficients ac(k) minimizing (3)
for all patches pic ∈ Pc do
Gpi

c
(k)← Solve (11) using ac(k)

if (7) is true then
G ← Update G with Gpi

c
(k)

end if
end for
k = k + 1

until ac(k) = ac(k − 1)
T ← Update T with template Tc computed as in (8)

end for

E. Template Matching

Given the templates {Tc} associated with each component
and the transformation matrices {Gpi} associated with each
detected patch, a cross-correlation strategy is employed to
detect new patches over the entire image.

It is worth noting that we do not search for structured
patterns or continuous deformations; indeed, we relax the
constraint of having similar deformations for objects close to
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each other and we search over the entire image each possible
combination of templates and deformations.

For each template Tc, c = 1 . . . C and each transformation
matrix Gpi , i = 1 . . . N , we compute normalized cross-
correlation (NCC) over the entire image for each composed
template Ti

c = Tc ◦ Gpi . This generates a set of N · C
correlation maps Mi,c = NCC

(
Ti

c, I
)
. The final results of

NCC are the global cross-correlation map M defined as the
pixelwise maximum over all the maps Mi,c

M(x, y) = max
i,c

Mi,c(x, y) (9)

New patches are the local maxima of M. To avoid problems
related to noise in low response maps, we also impose a
threshold τm on the minimum matching score, thus all the
local maxima lower than τm are ignored.

Algorithm 5 Template Matching
Input: image I, templates T , transformation matrices G,

labels C
Output: new patches Pnew

for all Tc ∈ T (with c ∈ C) do
for all transformation matrices Gpi ∈ G do
Ti

c ← Apply transformation Gpi to template Tc

Mi,c ← Compute correlation map
end for

end for
M← Compute the pixelwise maximum of Mi,c as in (9)
Pnew ← Detect new patches as local maxima of M.

Our approach has complexity O(NC) where N is the
number of transformation matrices (i.e. patches) and C is the
total number of components.

IV. EXPERIMENTS

We tested our framework on a brand new dataset, released
with this paper, and two publicly available datasets: Cells
data [16], composed by 200 synthetic images of cells; and S-
Hock data [37], focusing on 93 images of people standing on a
stadium watching an hockey match. The new dataset, dubbed
“RepTile”, exhibits several features that make it extremely
challenging; it is composed by 50 pictures collected from
the Internet containing heterogeneous visual objects, such as
humans, animals, bacteria, etc.; some sample images are por-
trayed in Fig. 2, while the whole dataset is available at http://
vips.sci.univr.it/dataset/counting/data/RepTile.zip. The images
of the dataset exhibit some specific difficulties, like irregularly
shaped objects and partial occlusions (Fig. 2-B, bacteria),
strongly different appearances (Fig. 2-D, faces), also exhibiting
object instances that are spatially very close or overlapping
each other (Fig. 2-A, cows and birds). The objects’ count
ranges between 9 and 655, with an average of 67 objects
per image. All the images are annotated with the ground
truth positions of each object in the from of bounding boxes,
for a total of 3366 annotations. Finally, the object instances
employed as seeds in our experiments are also specified in the
dataset.

In order to highlight the contribution of each step of our
framework, we performed experiments with three different
versions of our approach: 1) simple template matching (TM –
Algorithms 2 and 5), 2) template matching enhanced with
components extraction (TM+CE – Algorithms 2, 3 and 5),
and 3) the complete procedure. All the proposed experiments
are performed with the same starting seeds and the same
parameters.

As for the parameterization, two quantities have to be set:
the thresholds τd and τm. About the matching threshold, our
experiments show that good values are τm ∈ [0.2, 0.4]; higher
values enforce the method to select instances strongly similar
to the template (so generating many miss-detection), while
lower values tend to create many instances and thus increasing
the number of false positives. For geodesic distance threshold,
the best results are achieved with τd ∈ [1, 2]; this parameter
regulates how different the transformations have to be in order
to be considered during the congealing step, and in practice it
prevents the patches to be strongly deformed.

In the initialization step we manually selected a number of
seeds equal to 5% of the total amount of objects in the image.
As an under-the-hood rule, a good strategy for the initial
selection of the patches is to focus on visual entities strongly
different from each other; in this way, a large variability of
the objects to consider can be obtained in the first iteration,
and maintained along the entire image exploration process,
thus capturing more instances. Vice versa, if the initial seeds
are too similar to each other, they will collapse into a single
mixture component, resulting in a too conservative exploration
process. It is important to note that the approach accepts
the seed patches with or without the indication of which
mixture component they have to be assigned to: in the first
case, the user tells the algorithm that there are two or more
kinds of objects into play (e.g. cows and birds in Fig. 2-
A); in the second case the algorithm is fully responsible to
detect different kinds of entities. In any case, the method can
refine the indication of the user further partitioning mixture
components (e.g. different configurations of the same object
class, as for birds’ heads in Fig. 2-C). In our experiments
we tested the worst scenario, thus we did not specify the
component of each seed.

For the features extraction we used the MATLAB imple-
mentation of VLFeat libraries [38]. We built a codebook of
20, 20 and 40 words respectively for the SIFT, HOG and
RGB color spaces, and the spatial histograms are computed
by splitting each patch into a grid of 4×4 subpatches, with no
overlap among them.

The evaluation metrics employed are different according
to the specific task: object detection and counting. For the
object detection task, the quantitative evaluation is based on
the concept of matching: a match occurs when the intersection
between the predicted and ground truth patches is higher than
50% of the union of the two areas [39]. With this definition, we
can define the standard pattern recognition rates of precision,
recall and F1. For the counting task, we used two standard
measures: Mean Absolute Error (MAE), defined as the mean
of absolute differences between ground truth and predicted
counts, and Normalized Mean Absolute Error (NMAE), which

http://vips.sci.univr.it/dataset/counting/data/RepTile.zip
http://vips.sci.univr.it/dataset/counting/data/RepTile.zip
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A (41/51) B (32/41)

D (145/213) E (98/111)

F (472/655)

C (9/9)

G (249/296)

Fig. 2. Detection results obtained on 7 images of the RepTile dataset and final templates generated by the algorithm. The seeds are highlighted with a black
and white circle. The label of each image represents the ratio: predicted/GT counts.
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Method Detection Counting
prec. rec. F1 MAE NMAE

Cai and Baciu [17] 0.478 0.473 0.396 59 1.034
Arteta et al. [16] - - - 50 1.629

TM 0.860 0.776 0.805 18 0.186
TM + CE 0.909 0.790 0.835 18 0.164
Proposed 0.915 0.839 0.870 14 0.109

TABLE I
DETECTION AND COUNTING RESULTS ON REPTILE DATASET. COMPLETE

FRAMEWORK (PROPOSED), TEMPLATE MATCHING ONLY (TM) AND
TEMPLATE MATCHING WITH COMPONENT EXTRACTION (TM+CE), AND

STATE-OF-THE-ART METHODS.

is obtained by normalizing the MAE with the objects count
for each image. In both these cases, less is better.

Quantitative results on RepTile data are presented in Ta-
ble I. The third row shows the results obtained with template
matching only (Algorithm 5), where the input transformation
matrices G are identity matrices and each patch belongs to a
different component. Thus, each patch is the template used
in the matching phase, without applying any transformation.
Augmenting this with the components extraction step (Algo-
rithm 3) allows to take into account different object types, gen-
erating fewer templates to search in the image. This reduces
the number of false positives, resulting in a higher precision of
about 5%. Adding the congealing phase (Algorithm 4) allows
to obtain a better definition of templates by taking into account
the patches’ deformations; this increases the number of correct
detections, resulting in a higher recall of about 5%.

We also tested the proposed method on two public datasets
particularly suited for the object counting task. The first one
is Cells dataset [16], which contains 200 synthetic images of
cells, while the second is S-Hock dataset [37], that includes
the counting of people in the crowd.

For the Cells data, we tested all the 200 images separately.
The experimental protocol adopted in [16] requires that a
few images are used for the training (labeling them in their
entirety), focusing on the remaining ones as testing set. This is
not required by our approach, that instead wants to minimize
the user support. We started the analysis of each image with
the same random selection of 5% of cells in the image as initial
seeds. The starting bounding box of each seed is a square box
with size equals to 3 times the radius of the cell and centered in
the center of the cell itself. Please note that the testing protocol
is very different from the one used in [16], where they used
N training images and 100 testing images with 3 repeated
iterations to ameliorate the results (injecting false positive as
negative training sample); with this testing protocol the results
are about 10 times better then the one reported in this paper,
but this is a definitely different task and it is not the problem
addressed in this paper.

For the S-Hock dataset, we selected 100 random frames
from the videos and for each image we extracted a random
selection of 5% of people as initial seeds. In this case the
starting bounding boxes are the ground truth annotation of
each frame. All the methods were compared using the same
patches as input for each image.

Table II reports counting results on Cells data [16] and
S-Hock data [37]. The method presented by Cai and Baciu

Method Cells data S-Hock data
MAE NMAE MAE NMAE

Cai & Baciu [17] 149 0.809 117 0.779
Arteta et al. [16] 45 0.332 31 0.208

Proposed 40 0.233 7 0.048

TABLE II
COUNTING RESULTS ON CELLS [16] AND S-HOCK [37] DATASETS.

Method RepTile Cells data S-Hock data
Cai & Baciu [17] 2814 753 3655
Arteta et al. [16] 685 184 1067

Proposed 867 272 1265

TABLE III
AVERAGE EXECUTION TIME (IN SECONDS) FOR ALL THE METHODS AND

DATASETS. IMPLEMENTATIONS OF CAI & BACIU [17] AND THE PROPOSED
METHODS ARE PRODUCED BY THE AUTHORS, WHILE ARTETA et al. [16] IS
OUR IMPLEMENTATION STRICTLY FOLLOWING THE PAPER’S ALGORITHM.

has worst performance because images in both datasets are
unstructured, while the Arteta’s method performs pretty well
on its own data, but experienced problems with S-Hock data,
probably due to the high appearance variability of faces in
the crowd. In both cases our method outperforms the state-of-
the-art of more than 10% in MAE and NMAE. In the case
we decide to select few training patches on a single image,
and apply our approach starting from these patches on other
images, we avoid the overfitting, and the results drop down of
only 10% in terms of MAE on both Cell and S-Hock data.

We also present a comparison of the execution times for the
different methods and datasets (Fig. III). In our tests we used
a non optimized Matlab implementation on a standard laptop
with Intel i7 CPU and 8GB of RAM. The proposed method
is very close to the best performing one ( [16]), in particular
when the number of objects is limited (RepTile and S-Hock
data).

Fig. 3 shows qualitative results on a very challenging
image in RepTile dataset. Comparing images D and E, one
can appreciate how the component extraction phase hepls in
reducing the number of false positives (e.g. the detection on
top-left corner of D). In E, the templates generated after
clustering the different components are fewer than in D and
they average the appearance of many patches, making the
matching phase less sensitive to noise. Still, template match-
ing cannot handle the different geometry appearance of the
entities, e.g. fishes of different sizes with respect to the initial
seeds will not be properly detected. We overcome this problem
by aligning the patches belonging to the same component
with the congealing step (image F), resulting in an increment
of correct detections and, thus, of the recall rate. Images B
and C report results with state-of-the-art methods. In B, Cai
and Baciu [17] also consider a congealing phase but they do
not impose deformation constraints, leading some patches to
degenerate deformations. Furthermore, they are not able to
manage multiple texton templates, bringing to detection of one
single species at a time. Image C shows the density estimation
with the interactive framework of Arteta et al. [16]. Such a
method does not provide proper detections, but it estimates the
number of objects based on the density in specific regions.
In our experiments the final estimator cannot be adequately
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Fig. 3. Qualitative results of our experiments. The green rectangle in image A highlights the area where the images B-F are focused.

learned due to the low number of training samples.
More qualitative results are shown in Fig. 2, where detec-

tions and generated templates are reported. As for the number
of components automatically found, in some cases they are
intuitive – as the kind of animals in A and bacteria in B,
or the head orientation in C –, while in other cases the
components capture small variations on the visual appearance
of the objects, supposedly partitioning the visual intraclass
variance in separate smaller groups as visible in F and G.
Moreover, templates give to the user an immediate and useful
information about which object the component is related
to, eventually allowing the user to select and remove the
misleading components. e.g. the blue template in image E
is definitely not a face and the elements belonging to this
component could be removed from the final counting.

V. CONCLUSIONS

In this paper we presented an online learning by example
approach, capable to individuate visual motifs in an image
with a minimal supervision by the user, who only needs to
select few visual objects of interest. The approach outputs all
the instances of the target objects in the image, individuating
and extracting different object typologies (e.g. cows and birds).
The approach has been tested on a brand new dataset, dubbed
“RepTile”, characterized by very challenging characteristics
for object counting: different object classes in the same image,
a variable number of instances per type of object, and non-rigid
geometric displacement. This problem cannot be faced with
any of the techniques present in the literature, since they need
training data to work, or images where the repeated patterns
form a rigid structures, as the windows of a skyscraper or a
texture. Future perspectives are to embed the proposed method
into an interactive tool that allows the user to select “good”
and “bad” templates, automatically removing all the detections

provided by undesired components. Another direction will
focus on images where the objects to be analyzed are com-
posed by few pixels: actually, in our experiments, reasonable
results are obtained if the patches are at least of 30×30
pixels. This in practice prevents us to apply our framework
to some instances of crowd counting. In order to reduce the
computational complexity, we can reduce the number of total
transformation matrices (N ) by clustering them into groups of
similar matrices, thus reducing the number of cross-correlation
maps to be computed. Finally, a segmentation module based
on superpixels can be included in the pipeline to refine the final
output, providing a proper foreground/background segmenta-
tion. In such a case, our method could also be embedded into
image post processing tool as Photoshop or Gimp.

APPENDIX A
AFFINE TRANSFORMATION AND LIE ALGEBRA

In geometry, an affine transformation is a function between
affine spaces which preserves points, straight lines and planes.
A generic 2-D affine transformation is represented in the
homogeneous coordinates by means of the matrix G, such
as:

[x′, y′, 1]T = G[x, y, 1]T (10)

where x, y are the coordinates of a generic point in the original
space and x′, y′ are the coordinates after the mapping. G =
[ M t
0 1 ], where M ∈ GL(2) is an invertible 2 × 2 matrix and

t ∈ <2 is a 2× 1 translation vector.
The matrix G can be identified as the group of all invertible

affine transformations from the affine space into itself and it
is a Lie group G called 2-D affine group Aff(2). A Lie group
G is a differentiable manifold such as the group operations,
multiplication and inverse, are differentiable maps. The tangent
space to the identity element I of the group forms a Lie
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algebra g. A Lie group G and its algebra g are related by
the exponential map exp : g→ G such that

G = Exp

(
6∑

k=1

akEk

)
(11)

where {ak}k=1,...,6 are the coefficients related to the basis Ek

chosen as

E1 =
[
1 0 0
0 1 0
0 0 0

]
, E2 =

[
1 0 0
0 −1 0
0 0 0

]
, E3 =

[
0 −1 0
1 0 0
0 0 0

]
,

E4 =
[
0 1 0
1 0 0
0 0 0

]
, E5 =

[
0 0 1
0 0 0
0 0 0

]
, E6 =

[
0 0 0
0 0 1
0 0 0

]
.

Each geometric transformation corresponds to each Ek.
The inverse mapping is given by log : G→ g

Log(G) =
6∑

k=1

akEk (12)

The Lie algebra aff(2) is represented as [ U v
0 0 ], where U ∈

gl(2) and v ∈ <2. A further description of the Lie groups and
Lie algebra can be found in [40].
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