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Abstract This paper presents a new motion capture
(MoCap) system, the garment-based motion capture system
—GaMoCap. The key feature is the use of an easily wear-
able garment printed with colour-coded pattern and a generic
multicamera setup with standard video cameras. The coded
pattern allows a high-density distribution of markers per
unit of surface (about 40 markers per 100cm2), avoiding
markers-swap errors. The high density of markers recon-
structed makes possible a simultaneous reconstruction of
shape andmotion,which gives several concurrent advantages
with respect to the state of the art and providing performances
comparable with previous marker-based systems. In partic-
ular, we provide effective solutions to counter the soft-tissue
artefact which is a common problem for garment-based tech-
niques. This effect is reduced using Point Cluster Technique
to filter out the points strongly affected by non-rigid motion.
Uncertainty of motion estimation has been experimentally
quantified by comparing with a state-of-the-art commercial
system and numerically predicted bymeans of aMonte Carlo
Method procedure. The experimental evaluation was per-
formed on three different articulated motions: shoulder, knee
and hip flexion-extension. The results shows that for the three
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1 Introduction

The quest for accurate and reliable human body 3D recon-
struction and motion capture has delivered many solu-
tions that encompass different application scenarios ranging
from medical, sports, military, robotics, film-making and
videogames development. There exist severalmotion capture
approaches that can be tuned to the specific analysis require-
ments and operational constraints with each system having
its own advantages and drawbacks that made them popular in
the mentioned application fields. In particular, marker-based
active systems havemasteredmany disciplines thanks to their
accuracy as provided by the easy-to-deploy optoelectronic
cameras. However, being so popular, there are undoubtedly
limitations that can restrict their application.

In practice, the setup stage of these systems requires the
physical placement of themarkers and thismight be a tedious
task if a full body shape has to be reconstruct. This of course
also limits the number of points reconstructed thus providing
a sparse representation of the 3D object/individual at study.
Marker-less systems of course step over this limitation, how-
ever, at the expense of less accuracy in the 3D estimation.
Moreover, the marker placement indeed poses the problem
of the repeatability of the experiments, especially in clini-
cal trials. The MOCAP technician has to be skilful enough
to place markers in the very same position for each subject.
This task is often not practicable when clinical conditions
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Fig. 1 A picture of the experimental setup together with a test subject
wearing the colour-coded garment. Lamps and cameras (circled in red)
are attached over the aluminium cage structure. Cameras are linked to
the PCs that grab and process the video. The subject is standing in the
middle of capture area and he can move freely inside the cage (colour
figure online)

alter the placement of the marker (e.g. obesity or serious
injuries).

Here we propose a system, GaMoCap, that provides an
easier setup stage that allows a better repeatability of the
tests together with a semi-dense 3D reconstruction of the
shape. This place the GaMoCap between amarker-based and
marker-less system with the advantage of retaining a high
accuracy. The key factors of the system are the introduction
of a garment-basedMoCap that can be easilyworn by the user
and the implementation of novelComputerVision algorithms
that can detect a set of markers overlayed over the garment.
Figure 1 shows the working setup with the garment worn by
a user and the acquisition system.

The pattern is recognized using a standard camera system
thus limiting the cost givenbymore expensive active systems.
In particular, the GaMoCap also implements post-processing
techniques able to deal with the soft-tissue artefacts (STA)
that are related to the displacement given, for instance, by
flexing muscles. This effect also degrades standard marker-
basedMoCap systems since the STA can inject an estimation
bias when localising the joints of the articulated body. In
order to proceed with a fair comparison we will first pro-
vide a review on the state of the art of MoCap systems and
then detail the key features of GaMoCap by pointing out the
improvements of the proposed solution.

1.1 Current MoCap state of the art

Advantages and disadvantages of MoCap technology have
been analysed and discussed in several comprehensive sur-
veys [16,30] and in this paper we review only the most
relevant technologies for human motion distinguishing them

by the type of sensors employed and the reconstructedmodal-
ity: dense or sparse. Magnetic motion capture systems detect
the position and orientation of each body limb using a mag-
netic field (either the Earths magnetic field or the field
generated by a large coil), specific magnetic sensors and a
fine calibration of the entire acquisition volume. With a rela-
tively low number of markers, one for each limb, the system
offers a sparse 3Doutputwith good accuracy,mediumupdate
rates and no line-of-sight (self-occlusion) related problems.
However, this technology is very expensive, has high power
consumption, is sensitive to the presence of metallic objects
in the environment and, most important, is susceptible to
magnetic and electrical interferences. Mainly for these rea-
sons,magneticmotion capture is only employed for the study
of small and complex parts, e.g. hands [20].

Inertial motion capture technology [19] is based onminia-
ture inertial sensors that allow to measure rotation of the
joint angles using gyroscopes or accelerometers placed on
each body limb. These systems can capture the full 3D body
motion of a human body in real-time, are usually portable
and they allow large capture volumes, since the system is
completely wearable. The main drawbacks are the low reso-
lution and accuracy, the sensitivity to electromagnetic noise
and, most important, the fact that measurements drift by sig-
nificant amounts over extended time periods.

Both magnetic and inertial systems allow to reconstruct
themotion (i.e. the configuration and parameters of a skeletal
model) of the subject but not its 3D shape, due to the reduced
number ofmarkers (transmitters/sensors) that can be applied.
They also need to locate sensors on the body, which creates
load effect encumbering movements.

Vision systems have a high potential thanks to the great
improvements achieved in video sensing and image process-
ing. It is possible to distinguish vision-based MoCap in two
categories: marker-based and marker-less. Many success-
ful commercial products (e.g. Vicon, Qualisys and Motion
Analysis) belong to the first category. These systems recover
humanmotion by triangulating a set of markers (either active
or passive) placed on the subject skin or clothes. The main
limitations are the self-occlusion problem and the marker
matching problem. Regarding occlusions, as 3D is achieved
by triangulation, onemarker must be directly visible bymore
than one camera. In practice, for very complex motions, this
increases the number of cameras to be deployed to increase
the chance of amarker being visible by the sensors.Attaching
a kinematic model may reduce the influence of such problem
since the occluded marker position may be predicted by the
location of the other markers. However, these models are in
general piece-wise rigid and thus highly affected by STA.

Statistic priors to overcome this problem have also been
proposed in the literature in terms of coarse-to-fine mod-
els [3], partially rigid models [8] and Monte Carlo Markov
Chain [35]. On the other hand, the matching ambiguity prob-
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lem refers to the correct assignment of a marker label in the
multiple views. This problem becomes more relevant with a
high number ofmarkers (>100) since all themarkers have the
same appearance, especially when using active near-infrared
systems. Furthermore, the setup can be complex and themea-
surement procedure time-consuming, especially for clinical
applications where markers must be placed one by one using
a precise protocol [10].

In recent years, marker-less vision systems have proven
to be a valid alternative to marker-based technologies [5,17]
providing a direct and often dense surface reconstruction of
the subject. By using kinematics and dynamics models it is
possible to estimate shape and motion by fitting the mod-
els to the estimated surfaces. Accuracy and reliability are
critical points of these systems. In particular, since the result-
ing shape can be very complex, the method can generate
protrusions, and it is not able to handle cavities. For these
reasons hybrid systems [2] have been introduced; they com-
bine information coming from silhouette, shading and texture
to improve accuracy in the shape estimation process. Despite
the relatively easymeasurement procedure, the reduced accu-
racy still remains due to the fact that natural landmarks are
less accurate than their artificial counterparts and to the com-
plexity of human kinematics modeling, that also introduces
uncertainties. Nevertheless, these systems are an excellent
option for less-critical applications like gesture recognition
and human motion pattern classification [34].

Another interesting approach is to turn the capture system
from the inside-out, as described in [23], by placing the cam-
eras on the subject limbs. Despite the innovative approach
and the improved capturing space, the cameras on the limbs
can obstacle free motions, although going toward camera
miniaturization will partially solve this problem. One impor-
tant interference factor is represented by the limbs motion
that can induce camera rotations and cause accuracy deterio-
ration. Being the cameras worn by the subject, this system is
able to reconstruct only the subject motion but not its shape.

In November 2010, a low-cost vision system based on IR
lighting patterns projection was made commercially avail-
able on the market, the Kinect. This system also provides a
human pose detection algorithm by applying a classifier over
the depth images as provided by the sensor [24].

Despite the fast segmentation of body limbs data, this sys-
tem provides a low accuracy for clinical applications [29].

Because of the direct observation of soft tissuemotion, i.e.
subject’s skin, all the above motion capture systems suffer
from the STA problem. Inaccuracies introduced by STAs are
much larger than stereophotogrammetric ones and are both
systematic and random in nature. The pattern of the artefact
is subject and task dependent which prevents an experimen-
tal generalization and compensation; the artefacts are highly
correlated in time and frequency content with the acquired
motion thus avoiding filtering techniques to be effective.

STAs are, therefore, considered the bounding error source
in evaluating the skeletal motion by optoelectronic systems
recording markers on the skin since the very early appli-
cation of those methods for clinical, virtual reality or sport
applications. STA negative influence on motion estimation
have been investigated by many authors [14,18,25] and have
been addressed in two ways: trying to avoid the interference
or minimizing it. To completely avoid STA, it is possible but
onlywith invasive techniques such as the use of radio-opaque
markers implanted onto the bones [15] or even bones pin [13].
On the other way, it is possible to minimize the effect of STA
by optimization techniques as described by [1].

1.2 Main contributions

The main aim of this paper was to present—and describe in
detail—the GaMoCap system, a new hybrid system based
on a wearable garment and a multi-camera setup able to esti-
mate body shape and motion by means of a dense acquisition
and tracking of points printed on a colour-coded pattern. This
system provides the 3D localization of the markers with high
density and accuracy. In particular, the GaMoCap provides
an ideal trade-off between data completeness (about 3000
points) and accuracy (3D reconstruction error lower than
2mm3). The presented motion capture system provides both
shape andmotion estimationwith an overall level of accuracy
suitable for most applications.

The main contributions of the paper are:

2Dcolour-codedpattern to uniquely identify eachmarker:
in this work we extend and definitely improve the colour-
coding method first proposed by [21]; in particular, we
introduce several constraints to guarantee three important
properties: uniqueness, rotation invariance and compact-
ness (see Sect. 2.1).
Easy and fully automatic calibration procedure: we pro-
pose a completely automatic calibration procedure based
on the acquisition of images of a planar tool with colour-
coded markers. The system only requires a minimum of
100 images for each camera to estimate both intrinsic and
extrinsic camera parameters (see Sect. 2.3).
Automatic generation of human body model: by means
of Structure-from-Motion techniques, our system does
not need a human body model to be known a priori, but
it is able to automatically recognize the number of body
limbs acquired throughout the sequence and the joints
within them. This is achieved with a 3-dimensional gen-
eralization of Local Subspace Affinity (LSA) algorithm
(see Sect. 3).
Compensation of non-rigid deformations: by means of
Points Cluster Techniques (PCT), the GaMoCap is able
to compensate the effect of STAs in the estimation of
joint location and joint angles (see Sect. 3.1).
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Fig. 2 Hardware setup scheme and an image showing the GaMoCap system

The paper is organized as follows: Sect. 2 describes the
procedure for the 3D reconstruction of the human body; in
particular it addresses the problems of colour-codedmarkers,
camera calibration and image processing. Section 3 presents
the methods proposed for the estimation of the joint angles
and its uncertainty analysis. Section 4 shows the experiments
conducted on three different motions and the comparison
with the best performing commercial product (i.e. Vicon).
Finally, Sect. 5 draws conclusions and some directions for
future improvements.

2 Shape analysis

GaMoCap consists of a multi-camera setup and a garment
composed of a dark suit andmore than 3000 coloured circular
markers as shown in Fig. 2 (right).

Figure 2 (left) shows the configuration of the hardware
setup employed in GaMoCap. A main PC controls the trig-
gering device that synchronizes the video acquisition from
the cameras and it stores the acquired images from each pair
of cameras. Each secondary PC controls two cameras and
it communicates with the main unit. We use 8 triggerable
USB Point Grey Chameleon cameras with a resolution of
1280 × 960 pixels and with a frame rate of 10 fps. The illu-
mination lamps with mercury vapour at low pressure allow a
high colour rendering and they are compliant with European
Standard EN 12464-1. The system has been designed to be
completely scalable in terms of capturing space and number
of cameras to be able to perform either full body or single
limb motion analysis with a unique MoCap system. The cost
of the system for a full bodymotion capture is of about 10ke.

The key feature of the system is the wearable suit garment
printed with colour-coded pattern. Each marker on the suit
is identified by a unique ID, colour coded by its 8 neigh-
bours. A detailed description of ID marker calculation and
its properties is reported in Sect. 2.1.

The motion and shape of the subject are recorded as a
sequence of synchronized images acquired by the multi-
camera system. A 3-step procedure, reported in Sect. 2.2,
is used to recover the 3D position of each marker over time.
The trajectories of the markers are then used to analyse the
motion of the subject, as described in Sect. 3.

The calibration of GaMoCap multi-camera system is per-
formed with a new procedure (Sect. 2.3) based on the same
colour-coded pattern printed on the garment. The use of the
pattern as calibration grid, instead of the classic chessboard,
makes the multicamera calibration more flexible and fully
automatic, since it is able to deal with partial grid occlusions.

2.1 Marker ID calculation

The garment with colour-coded pattern was inspired by [21].
In that work each marker on the garment is identified by a
unique ID, colour coded by its 8 neighbours. The ID unique-
ness of markers allows to achieve a robust multicamera
matching and tracking even with a high number of mark-
ers per cm2. This high density of markers (about 40 markers
per 100cm2) allows to reconstruct the shape of the subject,
as well as its motion.

The colour coding described by [21] was originally devel-
oped for realistic simulation and visualization of textiles that
points to applications ranging from virtual actors for the film
industry to virtual prototyping of cloth design by means of
texture replacement in the recorded video streams. In our
work, this is the first time that the colour coding is applied
for human motion capture.

The garment used has a dark background and a base of
4 colours for the markers: red, yellow, green and blue. HSV
components of each colour have been chosen tomaximize the
reciprocal distance in the HSV space. Disposition and size of
the markers depend on the application: a full-body analysis
requires an increased size and spacing of the markers, while
for a closed-up application the markers’ size can be reduced
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Fig. 3 Marker ID computation: graphical example (top), rotation
invariance property (center) and sequences overlap (bottom)

and their density increased. For a full-body motion analysis
markers have a diameter of 10mm and they are placed on a
square grid with a 18-mm step.

Each marker on the garment has a unique colour-coded
ID assigned detecting the colours of its 8 neighbours. This
colour sequence of 9 elements (1 central + 8 neighbours)
is then translated into a numerical one with a simple colour
number assignment procedure: red = 1, yellow = 2, green
= 3, blue = 4, Fig. 3 (top). The sequence of 9 elements is
organized in blocks of 3 × 3 markers to obtain a compact
disposition.

The proposed colour coding has 3 important properties:

uniqueness there are notmultiplemarkers on the suit with
the same colour sequence
rotation invariance a marker ID is always the same, even
if the colours are all shifted forward (or backward) of N
positions, Fig. 3 (centre)
compactness each sequences of 9 markers, organized in
3 × 3 blocks, overlaps with the neighbour sequences,
Fig. 3 (bottom).

Thanks to these properties, it is possible to recover the
correct value of the marker ID with a generic unknown
camera-subject relative position and orientation and a high-
density markers distribution.

The maximum number of ID that can be created with a
sequence of 9 elements and 4 colours is qn = 49 = 262, 144.
However, not all the 262, 144 sequences are unique and rota-
tion invariant as well. Thus, all the sequences which do not
have these properties are deleted from the list of the possible
sequences. The rotation invariance property of the sequence
can be analysed as a cyclic shift of a sequence ofm elements
forward or backward of r positions. In more detail, the num-
ber of unique shift for a sequence of m = 8 elements (the
central marker is fixed) and q = 4 colours can be computed
as follows:

1

d
sd where sd = qd −

∑

i<d,i |n
si .

The number of strings with 8 different shifts is given by
1
8 s8 = 65280

8 = 8160. Since every centre of the sequence
can assume one of the 4 colours, there is a maximum of 4
· 8160 = 32,640 unique IDs. The compactness requires that
the sequences, organized as 3 × 3 blocks, partially overlap
with the neighbours, Fig. 3 (bottom). In order to arrange all
the blocks, we have implemented a brute force algorithm:
starting from a seed-block the algorithm tries to place all
the other blocks. When the algorithm does not succeed to
add more sequences, it undoes the last 3 sequences arranged
and start again with a different sequence. The algorithm fin-
ishes when no other sequences can be arranged on the grid.
With this algorithm we were able to create a grid of 90 rows
and 90 columns for a total of (rows − 2)(cols − 2) = 7744
sequences. While this number of sequences is much lower
than the theoretical one (32,640), it was enough for creating
a high-density garment.

2.2 Image processing for shape reconstruction

Motion and shape of the subject are recorded as a sequence
of synchronized images acquired by the multicamera system
as shown in Fig. 4. The reconstruction of the subject’s shape
is made possible by a 3-step procedure that calculates the 3D
position of each coloured marker on the garment captured by
the multicamera system at each time instant. The steps for
shape reconstruction are

1. markers’ detection on each image plane
2. IDs’ computation for each marker
3. markers’ matching and triangulation.

Marker detection is based on a contour extraction method.
We use the Canny edge detector to generate a binary image
of edges and then use this as input for the contour detection
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Fig. 4 Set of simultaneous images captured by different cameras

Fig. 5 The steps for shape reconstruction and motion segmentation

algorithm presented by Suzuki and Abe [26] as shown in
Fig. 5.

Among all the contours extracted from the image, markers
are identified through a filtering operation based on contour
properties. Two distinctive properties are calculated for each
contour, area and perimeter, allowing to distinguish markers
from objects in the background not related to the subject.
Each marker is then associated with the coordinates of its
centre of mass.

The second step relies on the assignment of marker ID.
For each marker, the colour and the relative position in the
code sequence are calculated. The marker colour labelling
procedure is facilitated by performing the analysis in the Hue
colour space. This is also thanks to the stable illumination
provided by the neon lamps that image the 4 colourswith very
different and stable Hue values. As described in Sect. 2.1,
the ID of each marker is computed by associating the colour
sequence of neighbour markers into a numerical one.

After the ID assignation stage, intra-image markers
matching is a straightforward procedure: same marker will
have same ID in different images. Since each marker is iden-

tified by the ID, the association procedure works well also
with a high change in the point of view. The coordinates of
each specific marker with a certain ID for all cameras are
stored in a matrix to be then used for 3D reconstruction.

All the information gathered by cameras are then used
to recover the 3D position of each marker using a multi-
camera framework for triangulation. This was chosen instead
of a multi-stereo approach that can provide a better accuracy,
if uncertainty is properly estimated as in [6,7]. Differently,
multi-camera provides smoother points trajectories while
multi-stereo reconstruction tends to generatemarker “jumps”
from one stereo pair to another, which ends up with also
a jump in the corresponding 3D position. An example of
the trajectories generated by our system is in Fig. 6. The
reduction of this effect is of paramount importance for the
subsequent clustering step. There are also other reasons that
led to the multi-camera solution: with the multi-camera it
is possible to calibrate simultaneously all the cameras, thus
speeding-up the procedure. Moreover, it does not require to
place couple of cameras close to each other thus providing
an easier configuration/dislocation of the cameras.
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Fig. 6 The trajectories computed with our system during a whole
movement. The point density is very high with respect to marker-based
competitors, while the accuracy in 3D reconstruction is much higher
than marker-less competitors

A first guess of the markers 3D coordinates is computed
with a generalized mid-point method [11]. This method cal-
culates the 3D position of the marker minimizing the squared
distance between the optical rays passing through the same
marker in two different images. Since a marker can be seen
by more than two cameras, all the possible stereo combi-
nations are taken into consideration and then the results
of triangulations are fused with a weighted mean function.
The weight of each triangulation result is proportional to
the square of the inverse of the distance of the optical rays
for that particular triangulation. A further Bundle Adjust-
ment step [27] is applied to refine the 3D estimation by
considering all the information from the cameras at each
frame.

2.3 Multi-camera calibration

Multi-camera calibration is a procedure to recover camera’s
relative position and orientation with respect to a common
reference frame.Relative camera pose calculation is achieved
by acquiring with all the cameras a rigid object with a pre-
defined geometry. The whole calibration of the GaMoCap
system is achieved through a 2-step semi-automatic proce-
dure based on Zhang’s calibration method [33] and Bundle
Adjustment refinement.

The first step consists in capturing a series of about 100
synchronized images of the calibration target with each cam-
era. The calibration target is a rigid plastic plane where the
same grid of circular colour-coded marker of the garment is
printed out, see Fig. 7. Reciprocal marker distances between
rows and columns are constant and equal to 68mm.

In this step user intervention is only necessary to move the
calibration target, changingposition andorientation, between
each camera view (Fig. 7 shows some key-frames).

The second step consists in a data elaboration procedure.
In this step the 3D position and orientation of the calibration
plane are recovered for each frame.While the original imple-
mentation of Zhang’s method uses a chessboard as a target,
we adopt a grid built with the same colour-coding method
used on the garment. This allows us to avoid problems of
ambiguity in plane pose reconstruction when the target grid
is partially missed in some images.With this pattern the pose
of the plane can be recovered by recognising at least 3 mark-
erswith relative IDs. The use of this strategy results in a speed
up of the calibration since an image of a partially occluded
calibration pattern is still a valid calibration image.

The data elaboration procedure consists in

– compute intrinsic parameters for each camera and a first
guess of extrinsic parameters

– runBundleAdjustment to refine both intrinsic and extrin-
sic parameters.

Figure 8 shows the relation between a point expressed in
a world reference frame and its coordinates on the image
plane.

This relation can be written in a compact form as

x = K [R|t] X (1)

where x are the coordinates of the point in image refer-
ence frame, K is the matrix of intrinsic parameters, R and
t are, respectively, the rotation matrix and translation vector
between world and camera reference frame. The calibration
procedure aims to identify the parameters that characterize
these transformations for all cameras. The camera model
used is a finite projective model.

This camera model is defined by the calibration matrix:
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Fig. 7 Set of images captured by different cameras during calibration procedure. The planar calibration pattern is printed with a colour-coded
pattern

Fig. 8 Transformations between the three reference frames: world,
camera and image. Dotted arrows represent the two transformations
([R|t] and K ) between the three reference frames (world, camera and
image)

K =
⎡

⎣
fx s x0
0 fy y0
0 0 1

⎤

⎦ , (2)

where fx and fy are the focal lengths of the camera, respec-
tively, in the x and y directions, expressed in pixel; s is
the skew factor that is taken into account only with non-
rectangular pixels; and x0 and y0 are the coordinates of the
principal point, i.e. the point of intersection between the prin-
cipal axis and the image plane.

This camera model is used to define the relations between
a 3D point defined in the camera reference frame and its
projection into image plane:

x = K [I3|0] Xcam, (3)

where Xcam is a vector that contains the homogeneous coor-
dinates of a generic point [xcam, ycam, zcam, 1]� expressed in
the camera reference frame. Compensation of real lens dis-

Fig. 9 Reference frames of the 11 cameras with respect to the world
reference after calibration procedure

tortion is taken into account using a radial-tangential model
identified by 5 parameters (3 tangential and 2 radial).

Extrinsic parameters are defined as rotation and translation
of the cameras reference frame with respect to the world
reference frame.

Xcam = [R|t] X (4)

whereR and t are, respectively, the rotationmatrix and trans-
lation vector betweenworld and camera reference frame, and
X are the homogeneous coordinates [x, y, z, 1]T of the point
P expressed in the world reference frame.

Extrinsic parameters are successively refined with a Bun-
dle Adjustment technique while intrinsic parameters are kept
fixed. After the calibration procedure, the mean reprojection
error achieved in our setup was lower than 1 pixel as reported
in Fig. 10. Extrinsic parameter calculation allows to iden-
tify the relative position and orientation of each camera with
respect to the world reference frame, Fig. 9.
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Fig. 10 Reprojection errors of
markers along columns (x) and
rows (y) of image before and
after Bundle Adjustment
optimization

3 Motion analysis

To perform motion analysis of a dynamic body, it is neces-
sary to process the 3D point cloud obtained from the previous
triangulation step. For human motion analysis, this is neces-
sary to compute the number of limbs, their connection (joint
position) and the angles between them. Given the unique IDs
of themarkers, generating trajectories followed by each point
is straightforward. Given these trajectories, the first step of
motion analysis is the automatic segmentation of different
body parts.

Although the coded markers could allow us to work with
a pre-defined limb segmentation based on a mapping of each
marker’s ID on the garment, we prefer to work with an auto-
matic algorithm to perform this task. The main reason of this
choice is the fact that different subjects can wear the gar-
ment in different ways—e.g. a short man could need to fold
the final parts of the garment’s legs—-and thus some areas of
the garment, especially close to the joints, might be subject
to mistakes, in particular markers located around knees and
elbows.

As pointed out in [28], among the algorithms for motion
segmentation, one of the best performing for articulated and
degenerate motions is the Local Subspace Affinity (LSA)
analysis [32]. LSA is a general framework for motion seg-
mentation exploiting spectral analysis to define the data
clusters which refer to different motion subspaces. It is based
on local subspace fitting in the surrounding of each trajec-
tory followed by spectral clustering. The basic idea is that

trajectories of points belonging on the same rigid body lie
on a subspace of dimension 3. Thus, we can build an affinity
matrix between each pair of point trajectories. Once the affin-
ity matrix is built, a standard clustering algorithm is applied,
K -means in our case, to group the trajectories compatibles
with different limbs. This procedure has been proved very
effective to work in the image space, i.e. directly from the
trajectories of points in the image plane, and able to handle
degenerate motions as well. In this work we use a generaliza-
tion of this technique to work in a Euclidean 3D space [22].
In our particular case, the main advantage of LSA consists
in recovering the structure of an articulated body (human
skeleton) without the need of a priori model.

This procedure clusters the 3D point trajectories into dif-
ferent body limbs. Figure 17 shows a result of the motion
segmentation. In order to run this algorithm, a unique marker
ID is an important feature since it provides a direct method
to track markers during the various frames and thus build a
reliable trajectory matrix.

Once 3D points are clustered into limbs, it is possible
to calculate reciprocal limbs rotation with a simple cloud
registration based on Singular Value Decomposition (SVD)
[12].

The compensation in the estimated angle’s given non-
rigid motion and STA was achieved using Point Cluster
Techniques (PCT) [1]. This technique is included in an opti-
mization phase successive to LSA segmentation to filter out
the points affected by STAs and thus obtaining a better angle
at joints estimation, see Figs. 17 and 18.

123



964 N. Biasi et al.

Uncertainty of angle estimation was experimentally quan-
tified by means of a Vicon system and numerically predicted
by means of a Monte Carlo (MC) procedure (Sect. 4.2).

3.1 Angle estimation

The rotation of a limb in each frame is computed by estimat-
ing the rotation of the reconstructed cloud of points relative
to that limb. The point cloud rotation, with respect to the
first frame, is computed using a Singular Value Decomposi-
tion (SVD) technique as proposed by [12]. Let pi and pi+1

be two points sets relative to the same limb at frame i and
i + 1. These two points sets are related by the equation:
pi+1 = R · pi + t + ni+1 where R is a 3× 3 rotation matrix,
t is a 3 × 1 translation vector, and ni+1 a noise vector.

The Least Squares solution ofR and t is based on the SVD
of the cross correlation matrixC computed asC = p̃i · p̃�

i+1,
where p̃i = pi − ṗi , p̃i+1 = pi+1 − ṗi+1 and ṗi , ṗi+1 are,
respectively, centroids of the point sets pi and pi+1.

The rotation matrix R is obtained as R = UVT, where
U and V are the result of the SVD decomposition of C =
U�VT.

Relative rotation between two limbs,AandB, at i-th frame
is calculated by composing the direct cosine rotation matrix
of the limb A with the inverse of the limb B as

RA→B
i = RA

i ·
(
RB
i

)−1
(5)

In order to obtain the rotation angle between two limbs,
the RA→B

i cosine rotation matrix is expressed with the
Rodrigues’ rotation vector representation. In this representa-
tion the direction of rotation vector defines the axis of rotation
and the magnitude is the value of the angle.

Themain limitationwith this angle estimation technique is
the LSA rigid motion assumption. Markers on the suit in cor-
respondence to the joints are stretched and heavily affected
by STAs during motion. This non-rigid motion of the points
at the joints affects the LSA motion segmentation and thus
angles estimation procedure. Since these markers have tra-
jectories compatiblewith both limbs, LSAwill produce a less
accurate segmentation. Figure 17 shows an example where
the points of torso and leg at hip proximity are mixed up.
This problem is addressed in the next section.

4 Experiments

In order to prove the good performances of our system,
we tested single parts of the processing software and the
complete system. In particular we present a synthetic experi-
ment for angle estimation, and three basic motions have been

analysed for real data, together with an uncertainty analysis
for angle estimation.

4.1 Synthetic data

To show the impact of STA effect, a toy example is presented
simulating wrongly segmented points in the angle estimation
procedure. In this experiment two sets of points relative to
two limbs, generically called A and B, are created. Points
relative to limb B are rotated of an angle from 0◦ to −90◦
around point O , while points of limb A are kept fixed. These
data are used in two trials.

In trial 1 the points sets are considered perfectly seg-
mented: points relative to the first limb are labelled as A
and points relative to second limb as B. The angle of relative
rotation between B and A is calculated with the SVD tech-
nique previously described. In trial 2 a segmentation error
is introduced by assigning the label A to two points relative
to limb B at joint proximity as shown in Fig. 11. After this
operation the angle of relative rotation between B and A is
estimated. The results of the angle estimated in these two
trials are shown in Fig. 12.

It is noticeable that the segmentation in trial 1 leads to a
perfect estimation of the angles, while the wrong segmen-
tation of points in trial 2 reduces the angle estimated of a
maximum of about 10%.

In order to reduce the effect of wrong limbs segmenta-
tion, especially close to the joint position, the points which
are stretched and heavily affected by STAs duringmotion are
identified with a technique, called PCT [1]. The main idea
of PCT is to assign a weight factor to each point and opti-
mize it to minimize the inter-frame variation of the inertia
tensor of the points cloud. This procedure aims to reduce the
effects of STA decreasing the contribution of points behav-
ing as “weak” rigid bodies. The points that move from the
reference frame with a non-rigid transformation will receive
a low weight. In our work the weights are used to filter out
the points considered affected by STAs by setting a thresh-
old computed as the 50% of the mean of the weights of the
points evaluated for each frame. If over the threshold, a point
is considered affected by STA and thus rejected as a non-rigid
one.

4.2 Angle uncertainty analysis

Uncertainty is estimated experimentally using a VICON sys-
tem as the reference and numerically quantified by means
of a Monte Carlo Method (MCM) procedure, according
to the GUM standard [30 100:2008 4]. The experimen-
tal comparison of GaMoCap and VICON, that is generally
accepted as a very reliable system, is able to provide
only a rough uncertainty estimation for two reasons: the
VICON, due to STAs, can only have a level of accu-
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Fig. 11 Trial 1 perfect points segmentation. Trial 2 wrong segmentation of point at joint proximity

Fig. 12 Angle estimated in trial
1 and 2 versus the ground truth
angle. Error is calculated as the
difference between the angle of
the trial and the angle imposed

racy comparable to GaMoCap; furthermore, to achieve a
complete statistics through experiments, a massive experi-
mental campaign is required that is out of the scope of the
present paper. The implemented MCM procedure quanti-
fies in a more complete statistical way the system accuracy.
To our knowledge such experimental/numerical procedure

for LSA and PCT has never been performed in the litera-
ture.

The evaluation of the uncertainty of the angle estimated
is achievable through an uncertainty propagation stage, [30
100:2008 4]. This can be implemented in several ways. The
two mainly used are
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– uncertainty propagation based on replacing an explicit
model by its first-order Taylor series approximation—
the law of propagation of uncertainty [30 5.1.2];

– numerical methods [30 G.1.5] that implement the prop-
agation of distributions, specifically using Monte Carlo
Method (MCM).

In practice, only for simple cases where an explicit and
close to linearity model is available can the law of propaga-
tion of uncertainty be applied. Due to strong non-linearities
and the procedural complexity of themodel that relates inputs
(marker 3D coordinates) to the output (angle between bodies)
without an explicit formulation, MCM is chosen.

The main stages of the MCM numerical procedure for
uncertainty propagation are:

Formulationwedefine the inputs (Xi ) andoutput quantity
(Y ) and the development of a model relating them. On
the basis of available knowledge, we assign a PDFs—
Gaussian (normal), rectangular (uniform), etc.—to the
inputs Xi . Then we assign a joint PDF to those input
variables Xi that are not independent. We then finally
define of the number M of trials of Monte Carlo.
Propagation we propagate the PDFs for the Xi through
the model to obtain the PDF for Y . This step can be sum-
marized with the following sequence: generation of M
vectors, by sampling from the assigned PDFs, as realiza-
tions of the (set of N ) input quantities Xi ; for each of
such vectors, forming the corresponding model value of
Y , yielding M model values; use of the M model values
to estimate the expected value (y) of Y and the standard
uncertainty u(y) associated with y.
Summarizing use of the propagated PDF for Y to obtain
the expectation and standard deviation of the output quan-
tity Y .

Figure 13 shows the block diagram of the procedure for
angle estimation of GaMoCap. Input variables are repre-
sented in triangles, the output variable in ellipse and the
functional blocks in rectangles. Input variables are the coor-
dinates of markers extracted from images and the intrinsic
and extrinsic calibration parameters. The output variable cor-
responds to the measured quantities, i.e. the angle between
limbs. Coordinates of markers extracted from images influ-
ence the triangulation process, 3D point cloud computation
and consequently the evaluation of the angle between the
limbs. Intrinsic and extrinsic camera parameters obtained
during the calibration phase also influence the position of
the markers extracted (through distortion coefficients) and
the triangulation results. Covariance matrix of intrinsic and
extrinsic parameters is recovered from [4].

The marker ID assignment is not represented in Fig. 13
and it is not considered as an input variable of the process

Fig. 13 Block diagram of the procedure for angle estimation

because the colour recognition process is considered very
robust and rarely affected by errors.

The formulation step in MCM methods consists also in
the selection of the trials number. This is fixed at 100 after a
convergence study. The first step of propagation is the input
data generation. In this step a hybrid procedure is adopted, in
which we use synthetic, obtained by PDF sampling, and real
data, obtained directly by image elaboration. The use of real
data is necessary to overcome the PDF generation process for
marker extraction. The PDF distribution ofmarkers extracted
is very difficult to estimate because of the great number of
variables involved in the estimation procedure of markers
center: light condition, image focus, marker inclination with
respect to the camera, marker projection on the CCD, etc.
The number of markers in each image (∼1000), multiplied
by the number of cameras (4) and by the number of frames for
each motion analysed (100), generate a number of samples
(105) that provide a good statistics of this influencing factor.
The calibration parameter sampling, due to variables corre-
lation, is performed from the covariance matrix obtained by
calibration algorithm [4].

123



Garment-based motion capture (GaMoCap). . . 967

Fig. 14 Viconmarker disposition onGaMoCap suit for motionA (left)
and motions B and C (right)

The second step of propagation consists in themodel eval-
uation for 100 timeswith the input data previously generated.
As last step, the 100 output values (angle between limbs)
obtained numerically through the model are used to estimate
the mean and uncertainty of the angles, with a level of con-
fidence set at 65%. The uncertainty range corresponding to
this confidence level is obtained according to GUM as the
minimum.

4.3 Real data

In order to evaluate the GaMoCap accuracy, results in
terms of estimated angles were compared to the commer-
cial MoCap system VICON.1 The VICON system is an
optoelectronic MoCap based on triangulation of passive
retroreflective markers and active infrared cameras. Perfor-
mances in terms of 3D reconstruction accuracy of VICON
were extensively studied during the years [9,31] confirming
a high accuracy and repeatability of the results.

VICON, compared to GaMoCap, achieves a higher cap-
ture frequency (>100Hz) but a lower number of recon-
structed markers. The maximum number of markers for the
VICON system is limited by issues related to the tracking
algorithm.This problemdoes not occur inGaMoCapbecause
each marker has a unique ID.

The skeletal configuration can be retrieved with VICON
using the following procedure: a triplet of markers is placed
on each body limb, which is then considered as a rigid body,
see Fig. 14 for the markers disposition.

We performed experiments on three very different types
of motions, one of them involving the arms (A–shoulder
flexion/extension) and two for the legs (B–knee and C–hip
flexion/extension). All motions were acquired a frequency of
10Hz and last about 10 s. Figure 15 shows the three motions
analysed.

1 http://www.vicon.com/.

Fig. 15 Motions analysed for angle estimation. A shoulder flex-
ion/extension, B knee flexion/extension, C hip flexion/extension

Next sections will present the uncertainty analysis on
one sequence for each kind of movement. Angles at joints
estimated with the GaMoCap are compared with angles esti-
mated with VICON system. Figure 14 shows the disposition
ofVICONmarkers employed, respectively, inmotionA (left)
and in motions B and C (right). Values of uncertainty of
angles for GaMoCap, computed as described in Sect. 4.2,
are also reported and discussed.

4.3.1 Motion A

Figure 16 (left) shows the comparison of the angle estimated
with LSA, LSA+PCT and VICON. The uncertainty bands
of angles estimated with MCM for LSA and LSA+PCT
are shown on the plot. Error bands, relative to standard
uncertainty, show that the three methods lead to compatible
results.

Figure 16 (right) shows the standard uncertainty of the
angle estimated with LSA and LSA+PCT with respect to
VICON.LSA+PCThave a standarduncertainty of 3.8◦. LSA
shows a standard uncertaintywhich increase linearlywith the
angle estimated. The standard uncertainty can be expressed
as linear expression as follow: 3.3◦ + 0.08· AV. Where AV
is the value of the angle estimated with VICON, expressed
in degree. This effect is more evident for motions B and
C.

4.3.2 Motion B

Figure 17 shows segmentation results formotion Bwith LSA
(left) and LSA+PCT (right) methods. It is noticeable that
many points in correspondence to the joints (within circles)
are wrongly segmented with LSA. This is due to the fact
that the points at joints do not move with a rigid motion.
LSA+PCT is not affected by this effect since points close
to the joints have been pruned. In Fig. 17 (left) LSA+PCT
points highlighted are the one used to calculate the angle.
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Fig. 16 Comparison of angle obtained for motion A with GaMoCap (LSA and LSA+PCT) and VICON (left) and standard deviation of the
difference of the angle estimated with LSA and LSA+PCT respect to VICON (right) for Motion A

Fig. 17 Motion B. Knee
flexion/extension. Comparison
of results of segmentation
operation with LSA (left) and
LSA+PCT (right)

Finally, Fig. 18 shows angles calculated with the three meth-
ods.

It is noticeable that LSA+PCT is very close to VICON
angle estimation while LSA deviates strongly in terms of
lower angle estimation query (−20◦ with respect to VICON)
and wider bands of error. These two effects are justified by
the wrong segmentation of points close to the joints provided
by LSA and the non-determinism of trajectory clustering

operation in LSA. Non-rigid motions of points in proxim-
ity of joints introduce an error of angle underestimation as
described in Sect. 3.1.

Wider error bars are justified by the fact that clustering step
of points in LSA is performed with a K -means approach. In
this algorithm, the points chosen as seed for segmentation
are selected randomly at each trial of MCM. This gener-
ates a segmentation slightly different in each trial, especially
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Fig. 18 Left comparison of angle obtained for motion B with GaMoCap (LSA and LSA+PCT) and VICON. Right standard deviation of the
difference of the angle estimated with LSA and LSA+PCT respect to VICON for Motion B

Fig. 19 Motion C. Hip
flexion/extension. Comparison
of results of segmentation
operation with LSA (left) and
LSA+PCT (right)

for the points at the proximity of joints. The different seg-
mentation of these points in each MCM trial causes a wider
error bands in angle estimation. Figure 18 (right) shows the
standard uncertainty of the angle estimated with LSA and
LSA+PCT with respect to VICON. LSA+PCT have a stan-
dard uncertainty of 1.6◦, and this value remains constant
with the angle estimated. LSA shows a standard uncertainty
which increases linearly with the angle estimated. The stan-
dard uncertainty can be expressed as linear expression as
follows: 1.1◦ + 0.13· AV. Where AV is the value of the angle
estimated with VICON, expressed in degree.

4.3.3 Motion C

Figure 19 shows segmentation results formotion Cwith LSA
(left) and LSA+PCT (right) methods.

Figure 20 (left) shows how LSA underestimates the max-
imum angle at hip of about 14◦ with respect to VICON.
Figure 20 (right) shows the standard uncertainty of the angle
estimated with LSA and LSA+PCT with respect to VICON.
LSA+PCT have a standard uncertainty of 0.8◦. This value
remains constant with the angle estimated. LSA instead has
a standard uncertainty that increases linearly with the angle
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Table 1 Average difference between angles estimated with LSA and
LSA+PCT with respect to VICON for 10 subjects and 3 different type
of motions

Acq. Motion type LSA vs Vicon LSA+PCT vs
VICON

1 A 4.6◦ 1.1◦

2 A 3.0◦ 2.7◦

3 A 16.0◦ 0.8◦

4 B 7.9◦ 1.4◦

5 B 21.6◦ 0.3◦

6 B 5.3◦ 2.9◦

7 C 2.8◦ 0.3◦

8 C 4.2◦ 3.1◦

9 C 5.6◦ 0.1◦

10 C 3.6◦ 1.1◦

Avg. – 7.46◦ 1.16◦

estimated. The standard uncertainty can be expressed as lin-
ear expression as follows: 0.2◦ + 0.05· AV. Where AV is
the value of the angle estimated with VICON, expressed in
degrees.

The difference of repeatability for motion A and B com-
pared with C is explained by a greater number of points
reconstructed onwhich the angle is calculated. Table 1 shows
further experimental validation provided by a test on ten dif-
ferent subjects reporting the results of the comparison of
the proposed method— named LSA+PCT—and LSA with
respect to VICON. We can appreciate how the average error

of GaMoCapis very limited, about 1.16◦, and the poorest
result in our test is still a very good achievement, about 3◦.
Moreover, the PCT introduced to handle STA provides an
average improvement in performances of about 6.3◦ with
peaks of more than 20◦ in sequence 5 (Table 1).

5 Conclusions

In this articlewepresented a newmulticamera garment-based
motion capture system, theGaMoCap. The key feature of this
system is a wearable garment with a colour-coded pattern.
The pattern allows a high-density distribution of markers on
the target surface without introducing mismatches. The high
number of markers makes possible a simultaneous recon-
struction of motion and shape of the subject that wears the
garment.

Analysis of themotion is performedwithout a prior knowl-
edge of the kinematics model of the subject with Local
Subspace Affinity. LSA allows, through the segmentation of
the trajectories of the markers, to identify the limbs and joint
position of the subject. The unique ID of each marker on the
garment ensures to build outlier-free trajectory matrices to
segment the motion.

The procedure of angle estimation was analysed in par-
ticular to show how soft tissue artefacts introduce an error
into limb segmentation that leads to an underestimation of
the joint angles. This effect was reduced using Point Clus-
ter Techniques to filter out the points affected by non-rigid
motion. This technique is particularly suitable for GaMoCap
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Fig. 20 Left comparison of angle obtained for motion C with GaMoCap (LSA and LSA+PCT) and VICON. Right standard deviation of the
difference of the angle estimated with LSA and LSA+PCT respect to VICON for Motion C
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because of the high number of points reconstructed and dis-
tributed on the limbs.

A detailed uncertainty analysis of the angle estimation
method was performed. Uncertainty of angle estimated with
GaMoCap was estimated experimentally by means of the
VICONreference andnumerically quantified bymeans of the
MonteCarloMethod procedure. TheMCMproposed used an
hybrid approach inwhich synthetic, obtained by sampling the
probability density function, and real data, obtained directly
by image processing, were used.

The VICON system was chosen as reference because of
the high accuracy and repeatability of the results but, due
to STA, it can only have a level of accuracy comparable to
GaMoCap.

The experimental validation shows how LSA+PCT gives
results comparable withVICON system. The standard uncer-
tainties of the angles estimated have a value of 3.8◦ for the
shoulder, 1.6◦ for the knee and 0.8◦ for the hip. LSA, due to
STAs, underestimates the angle of a maximum of 20◦ com-
pared with VICON for the knee and a maximum of 14◦ for
the hip. Furthermore, results show how the uncertainty of the
angle estimated with LSA+PCT is stable during the motion
while LSA increases linearly with the angle.
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