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Abstract

The detection of groups of people is attracting the atten-
tion of many researchers in diverse fields, with a growing
number of approaches published each year; despite this,
the evaluation metrics are not consolidated, with some mea-
sures inherited from the people detection fields, other ones
designed specifically for a particular approach, generating
a set of not comparable figure of merits. Moreover, exis-
tent methods of analysis are scarcely expressive, for exam-
ple ignoring the fact that groups have different cardinali-
ties, and that obviously larger groups are harder to find.
This paper fills this gap presenting GRODE, a suite of mea-
sures of accuracy which defines precision and recall on the
groups, including the group cardinality as variable. This
gives the possibility to investigate aspects never considered
so far, such as the tendency of a method of over- or under-
segmenting groups, or of better dealing with specific group
cardinalities. The metrics have been applied to all the pub-
licly available approaches of group detection, discovering
interesting strength and pitfalls of the current literature, and
promoting further research in the field.

1. Introduction

The detection of groups of people has become a relevant
task in many computer vision systems, in order to under-
stand social activities and performing high-level profiling,
thus impacting on videosurveillance, social robotics, social
signal processing, to quote a few.

On the one side, some approaches build over object
tracking frameworks, enriching the usual per-person esti-
mation with labels of group membership: these are added
after the tracking in a post-processing step [4, 8, 14, 24], or
directly embedded in the state-space of the filtering mecha-
nism [2, 6, 11]. On the other side, many more approaches
discover groups without temporal reasoning, directly on
still images [1, 5, 7, 10, 13, 15, 16, 17, 18].

In most of the cases, the individuation of a group lies on
intuitive observations of proxemics, that is, mutual proxim-
ity and common dynamics (especially in the tracking ap-
proaches), while in some other cases the sociological no-
tion of F-formation [7, 10] has been embedded into differ-
ent minimization problems solved by Hough voting strate-
gies [1, 7, 16, 17] or graph theory methods [10, 18, 21, 22],
or directly faced by classification approaches [5, 13, 15].

In all the cases, the quantitative evaluation of a group
detection method is not lying on a widely accepted proto-
col, generating a considerable set of metrics which are spe-
cific for the scenario-at-hand, making hard a fair compari-
son among different researches.

The most straightforward measures are inherited from
the tracking literature, that is, the CLEAR MOT metrics [3],
where bounding boxes around the single individuals have
been replaced by the convex hull enveloping all the people
inside the group [2, 14]. Similar metrics are designed con-
sidering the object detection approaches [5, 13, 15]. In these
cases, groups are intended as atomic entities, so that the er-
rors of including more people in a group or losing some
individuals in a formation are not explicitly modeled.

On the contrary, the metrics proposed in [7] deal with
this problem, introducing also the concept of tolerance: in
such a formulation, a group is considered as correctly esti-
mated even if some individuals are missing or erroneously
included. These metrics are the most used for all the meth-
ods that rely on a calibrated cameras and use as input ground
position of labelled individuals in the scene; in other words
they do not consider any processing on the image level, but
assume to have the detections and head pose estimates.

Despite these measures focus on many interesting as-
pects about the detection of groups, they seem to forget
that groups can be different in terms of cardinality, rang-
ing from pairs of people to sets of 7-8 people (after that it
is reasonable to talk about crowds [9], which is not the sub-
ject of this study). As intuitive by looking at Fig. 1, larger
groups of people are harder to be completely individuated
than smaller formations: this fact is anyway neglected by
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Figure 1. Examples of groups configurations in daylife situations.

the current metrics, that evaluate instead all the detections
equally important in the computation of the final scores.

The aim of this paper is to present a set of novel group
detection metrics, where the presence of groups of different
numbers of people is of primary importance. In particu-
lar, the idea is to address the behavior of a group detection
approach with respect to specific group cardinalities, indi-
viduating the group settings where a given algorithm per-
form better than another. A first tentative of this kind has
been proposed by Setti et al. [18], but much more can be
done. In facts, an interesting phenomenon that can be cap-
tured is the tendency of oversegmenting or undersegment-
ing a group, and in the detail if this tendency is polarized on
particular formation cardinalities (that is, the tendency of
systematically capture/break a group of G elements as one
or more groups of g individuals). This sort of report will
be of sure useful to 1) deeply understanding the nature of
a group detection approach; 2) selectively fixing the issues
and ameliorating the approach.

The proposed metrics model all of these aspects, and
have been applied to most of the group detection approaches
whose code is publicly available in the literature, and to
different datasets; the results are enlightening, in the sense
that many of the above discussed aspects unveil some un-
explored characteristics of the approaches, helping the re-
searcher in understanding which methods are more suited
to his/her requirements.

The rest of the paper is organized as follows: in Sec-
tion 2 we discuss the metrics used in the related literature,
while in Section 3 we present the new GRODE metrics we
propose and Section 4 reports some experiments on a public
dataset to validate our claims. Finally Section 5 draws the
conclusions of this work.

2. Metrics in the literature
As for the metrics inherited from the tracking/detection

fields, Manfredi et al. [13] propose two metrics on the im-
age level considering as main concept the intersection of the
group detection convex hulls and the ground truth regions.
In particular they define the overlapping ratio (Or) as:

Or =

∑P
p=1Mout(p) ∩Mgt(p)∑P
p=1Mout(p) ∪Mgt(p)

(1)

where p is a generic pixel and P is the total number of pixels
in the image, Mout is a mask output by the detector algo-
rithm that is 1 if the pixel belongs to a detected group and
0 otherwise, and Mgt is the same for ground truth. They
also account precision and recall metrics at object level (PO

and RO) by considering a group as correctly identified if
the spatial overlapping with the ground truth is higher that
50% of the intersection over union. This concept of pixel-
wise association of detected and ground truth groups has the
main drawback of being very sensitive to camera orientation
and occlusions.

A similar metric is used by Choi et al. [5], where, other
than considering the intersection over the union ratio, it also
forces a detected group to be associated with at most one
ground truth group and vice versa. On top of it, the au-
thors use standard precision, recall and F1 measures. To
avoid problems related to misdetections of individuals in
the scene, the metric ignores these also from ground truth
groups.

Rota et al. [15] use an approach based on identifying in-
teractions between pairs of individuals, therefore the met-
rics employed are based on the correct identification of each
link between pairs of individuals; this is a common choise
for clustering problems and is commonly referred as pair-
wise loss. They consider standard precision, recall and ac-
curacy measures where a true positive is a pair of individu-
als belonging to the same group both for the estimates and
ground truth, a false negative is a pair of individuals belong-
ing to different groups both in estimates and ground truth,
false positives are pairs of individuals grouped together by
the algorithm but in different groups in ground truth, and
false negatives vice versa.

The pairwise loss function has the main drawback to
be imprecise when dealing with large crowds, due to the
quadratic number of connections generated between mem-
bers. To overcome this problem, Solera et al. [19] propose
to extend the MITRE loss function [23], commonly used
in NLP for the coreference problem, to handle groups; in
particular, the MITRE loss is not able to handle singletons.
The GROUP-MITRE loss is obtained by adding, for each
individual, a fake counterpart to which only singletons are
connected.

Concerning the concept of tolerance of detection of a



group, in [7] a group is considered as correctly estimated if
at least d(T · |G|)e of their members are found by the group-
ing method, and no more than 1−d(T · |G|)e false subjects
are identified, where |G| is the cardinality of the labelled
group G, and T ∈ ]0, 1] is the tolerance threshold, typically
set as 2/3 or 1. Standard precision, recall and F1 measures
are then used to compare different methods. Recently, Setti
et al. [18] presented a new metric defined as the area under
the curve (AUC) in the F1VST graph with T varying from
1/2 to 1. This metric is called Global Tolerant Matching
score (GTM) and has the value of being independent from
the tolerance threshold T . These last metrics are the most
used for all the methods that rely on a calibrated cameras
and use as input ground position of labelled individuals in
the scene; in other words they do not consider any process-
ing on the image level as the previous ones, but assume to
have the detections and head pose estimates.

3. The GRODE metrics
The GRODE metrics are all based on a unique data struc-

ture, which is the Histogram of Individuals over Cardinali-
ties (HIC) matrix. The HIC matrix is computed by consid-
ering (over time and over each individual in the scene) the
membership of a person of a) a given ground-truth group
and b) the detected group in which he/she is currently asso-
ciated, in relation to the cardinalities of these two groups;
in simple words, an individual belonging at a given time in-
stant to a ground-truth group of cardinality i and estimated
in a group of cardinality j adds 1 inHIC(i, j), and the pro-
cess is repeated for all the persons and all the time instants
of analysis. The matrix is then normalized over the rows.

Formally, HIC is defined as:

HIC(i, j) =
1

nj

∑
t∈T

∑
p∈P

dij (p,G,GT ) (2)

where i and j vary over the group cardinalities in the scene,
that is 1 ≤ i ≤ |gt|max and 1 ≤ j ≤ |g|max, with |gt|max

and |g|max the maximum group cardinality of ground truth
and estimated groups respectively, t is a time instant – i.e.
a frame – within the whole set of frames under analysis T ,
p is a person within the list P of all the detected people at
that particular time t, G andGT are the sets of all estimated
and groud truth groups at time t, and nj is a normalization
term which sets to 1 the summation over the rows of HIC.
Finally, dij is an accumulation function defined as:

dij (p,G,GT ) =


1 if ∃ g ∈ G ∧ gt ∈ GT :

p ∈ g ∩ gt ∧ |g| = j ∧ |gt| = i

0 otherwise
(3)

The ideal detector would only have 1 on the diagonal and
0 everywhere else, while a good balance between upper and

lower triangulars means the detector is not prone to merging
small groups toghether or splitting big groups into smaller
ones. Moreover, a uniform distribution over the diagonal
of HIC matrix means the method does not prefer certain
cardinalities over the others.

Based on this matrix, we propose a set of scalar metrics
to compare performances of different methods on the same
dataset.

Thinking about HIC matrix as a confusion matrix in a
multi-class classification problem, we can easily define the
cardinality level accuracy (A) as:

A =

∑
iHIC(i, i)∑

i

∑
j HIC(i, j)

(4)

and we can also compute the standard pattern recognition
metrics precision, recall and F1 for each cardinality C:

Pr(C) =
HIC(C,C)∑
iHIC(i, C)

(5)

Re(C) =
HIC(C,C)∑
j HIC(C, j)

(6)

F1 (C) = 2
Pr(C) ·Re(C)
Pr(C) +Re(C)

(7)

As a measure of how a method is able to detect groups of
different cardinalities in the same manner, we propose the
cardinality deviation (D) defined as the standard deviation
within the elements on the diagonal of HIC matrix:

D =

√
1

N

∑
i

(HIC(i, i)− µ)2 (8)

where µ is the average of the elements on the diagonal and
N is the dimensionality of matrix HIC.

To account the balance of a method between under- and
over-segmentation we propose the upper-lower difference
(UL), defined as the difference between the summation of
all the elements of the upper and lower triangular matrices
extracted by HIC:

UL =
∑
i

∑
j>i

HIC(i, j)−
∑
i

∑
j<i

HIC(i, j) (9)

and its weighted version (WUL) where elements far from
the diagonal are weighted more then the closer ones:

WUL =
∑

i

∑
j>iHIC(i, j) · (j − i)−

−
∑

i

∑
j<iHIC(i, j) · (i− j)

(10)

The rational of this measure is that we want to penalise
more the situations where, for example, an element which
is supposed to form a group of 2 people is assigned to a



formation consisting of 8 elements instead of to one of 3 el-
ements. The reason is that drastically different sized groups
are often treated with different models and thus sharing in-
dividuals among them could mean a very low specifity.

With this set of metrics we are now able to evaluate
group detectors not only in a global way, but analyzing its
most important features, i.e. the ability to detect groups of
different cardinalities with no bias and the balance between
over- and under-segmentation.

4. Experiments
In this section we present some experiments to validate

our claims in the previous sections and in particular to prove
the relationship between the metrics and the behaviour we
expect from the detector.

We used in our experiments the publicly available GDet
dataset [1]. This dataset is composed by a total of 403 an-
notated frames acquired by 2 angled-view low resolution
cameras (352×328 pixels) in an indoor scenario of a vend-
ing machines area where a maximum of 7 people meet and
chat while they are having coffee. For ground truth genera-
tion, people tracking has been carried out with the particle
filter proposed in [12], while head pose estimation is per-
formed afterwards with the method in [20] considering only
4 orientations (front, back, left and right). Table 1 shows the
groups’ distribution in terms of number of people for group
cardinality in GDet dataset.

Cardinality 1 2 3 4 5 6
People 367 394 372 88 175 78

Table 1. Number of individuals for each groups’ cardinality in
GDet dataset.

We compare seven different state of the art methods:
one exploiting the concept of view frustum (IRPM), two
based on dominant-sets (IGD and GTCG), three different
version of Hough Voting approaches (linear, entropic and
multi-scale HVFF), and one based on graph-cuts technique
(GCFF). Inter-Relation Pattern Matrix (IRPM), proposed
by Bazzani et al. [1], uses the head direction to infer the
3D view frustum as approximation of the focus-of-attention
of an individual; this is used togheter with proximity in-
formation to estimate interactions: the idea is that close-by
people whose view frustum is intersecting are in some way
interacting. Interacting Group Discovery (IGD), presented
by Tran et al. [21], is based on dominant sets extraction
from an undirected graph where nodes are individuals and
the edges have a weight proportional to how much people
are interacting; the attention of an individual is modeled as
an ellipse centred at a fixed offset in front of him, while the
interaction between two individuals is proportional to the
interserction of their attention ellipses. In [22] the authors
develop a game-theoretic framework called Game-Theory

for Conversational Groups (GTCG), supported by a statisti-
cal modeling of the uncertainty associated with the position
and orientation of people. Specifically, they use a represen-
tation of the affinity between candidate pairs by expressing
the distance between distributions over the most plausible
oriented region of attention. Additionally, they can inte-
grate temporal information over multiple frames by using
notions from multi-payoff evolutionary game theory. Under
the caption of Hough Voting for F-formation (HVFF) we
consider a set of methods based on a Hough Voting strategy
to build accumulation spaces and find local maxima of this
function to identify F-formations. The general idea is that
each individual is associated with a Gaussian probability
density function which describes the position of the o-space
centre he is pointing at. The pdf is approximated by a set of
samples, which basically vote for a given o-space centre lo-
cation. The voting space is then quantized and the votes are
aggregated on squared cells, so to form a discrete accumula-
tion space. Local maxima in this space identify o-space cen-
tres, and consequently, F-formations. Over the years, three
versions of these framework have been presented: in [7] the
votes are linearly accumulated by just summing up all the
weights of votes belonging to the same cell, in [16] the votes
are aggregated by using the weighted Boltzmann entropy
function, while in [17] a multi-scale approach is used on top
of the entropic version. Finally, Graph-Cuts for F-formation
(GCFF), presented Setti et al. [18], proposes an iterative ap-
proach that starts by assuming an arbitrarily high number of
F-formations: after that, a hill-climbing optimisation alter-
nates between assigning individuals to groups using the ef-
ficient graph-cut based optimisation, and updating the cen-
tres of the F-formations, pruning unsupported groups in ac-
cordance with a Minimum Description Length prior. The
iterations continue until convergence, which is guaranteed.
For each method, the parameters have been set in order to
give the best performances on the specific dataset in terms
of precision, recall and F1 metrics as defined in [18].

Figure 2 shows the HIC matrices for all the methods
used in this comparison. Simply looking at the matrices,
the reader can have an intuition on the behaviour of each
method. For instance, IRPM and IGD are expected to per-
form very well detecting singletons, while HVFF lin is
prone to detect small groups of 2 elements. GCFF looks
to be the most balanced within the seven methods, while in
general all the other six methods show a tendency to over-
segment. Moreover, groups of 6 elements are only detected
by multiscale HVFF and GCFF. These intuitions will be
confirmed by the analysis of numerical scores that follows.

Figure 3 reports the cardinality level accuracy (A) and
cardinality deviation (D). As expected, GCFF is the best
performing in both scores, with an accuracy of about 0.64
and a cardinality deviation lower than 0.2. Note that low
values of D does not mean that the method is well per-
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Figure 2. HIC matrices for seven state of the art methods on GDet
dataset. (Best viewed in colors)

forming in general, but only that it has no preferences for
a particular cardinality: for instance IRPM, HVFF ent and
HVFF ms have very similar D (less than 1% of difference)
but different A, this is due to the fact that IRPM is very
good detecting singletons and performs decently for groups
with cardinality smaller than 4, HVFF ent performs pretty
well for singletons and groups of 2 and 3 people but has no
detections for bigger groups, and HVFF ms performs well
for singletons and groups of 2 people decreasing the perfor-
mances with bigger groups; still HVFF ms, together with
GCFF, is the only method able to correctly detect groups of
6 individuals in this dataset.

Figure 4 reports the upper-lower difference in its abso-
lute and weighted versions. As already foreseen from the
HIC matrices of Figure 2, all the methods except GCFF
have a tendency to oversegment, in particular Hough voting
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Figure 3. Cardinality level accuracy (A) and cardinality deviation
(D) for all the methods on GDet dataset. (Best viewed in colors)

methods are performing very poor from this point of view.
Note that GCFF and GTCG have very similar UL in abso-
lute value, but the way the two methods generate these val-
ues are completely different; indeed, looking at the matrices
one can see that GCFF has very few elements off-diagonal,
while GTCG has a good balance between over-and under-
segmentation. This behaviour can be seen also by analyz-
ing the UL and A together: the best detector would have
UL ' 0 and A ' 1, while low values of A means the de-
tector is performing bad both in terms of over- and under-
segmentation.

Moreover, the weighted version (WUL) is more infor-
mative than the absolute one, since it takes into account
the ability of a detector to approximately detect correct
groups. This effect can be seen from the comparison of
HVFF ent and HVFF ms, looking at the absolute differ-
ence (UL) the multiscale approach seems to be more prone
to over-segmentation than the entropic version, but the en-
tropic method tends to split big groups into small ones while
the multiscale only loses some elements in mid-size groups,
leading to smaller values of WUL. A similar effect can be
seen comparing GTCG and GCFF.

Results in terms of precision, recall and F1 are reported
in Figure 5 and 6. To confirm our intuition from the matri-
ces and the accuracy, also in terms of precision/recall scores
the best performing algorithm is GCFF. But, while the aver-
age scores only give a general overview on the performaces
of each method, the cardinality analysis shown in Figure 6
is much more informative. Other than the best performing
in average, GCFF is also the best performing in terms of
F1 score for every single cardinality; moreover, GCFF has
a pretty uniform distribution over the different group sizes’
for each metric, with a value of 0.45 in the worst case (re-
call of singletons). Note that all the other methods, with
the exception of HVFF ms, have precision, recall (and thus



UL WUL
−1

−0.5

0

0.5

1

 

 

IRPM
IGD
GTCG
HVFF lin
HVFF ent
HVFF ms
GCFF
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Figure 5. Average precision, recall and F1 scores for all the meth-
ods on GDet dataset. (Best viewed in colors)

also F1) 0 for cardinality 6 and some of them also for car-
dinality 5; testifying their inability to detect big groups. On
the other hand, most of the methods are pretty good in sin-
gletons detection, and most of them perform pretty well in
detection of pairs of people (cardinality 2).

5. Conclusions

In this paper we present a novel set of group detection
metrics, which are based on evaluating the correct assign-
ment of single individuals to differently sized groups. A
bad assignments is not generically contributing to a group
detection error, but maps into a data structure which high-
lights the tendency of over- or under-segmenting a group,
other than defining precision and recall score for each group
cardinality. At the best of our knowledge, such a level of
description for the group detection problem evaluation has
never been taken into account. We think that these measures
could be used in general for any group detection algorithm,
thus promoting a fair comparison in the related literature.
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Figure 6. Precision, recall and F1 scores for each groups’ cardi-
nality for all the methods on GDet dataset. (Best viewed in colors)
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